
Institut für Betriebssysteme und
Rechnerverbund

Encryption and Key Exchange in
Wireless Sensor Networks

Erwin∗

January 15, 2013

Encryption and key distribution are important primitives to build

secure Wireless Sensor Networks (WSN). Different block ciphers were

proposed in literature to provide encryption in resource constraint dis-

tributed networks. A large amount of different key distribution schemes

were implemented, targeting different types of WSNs. These schemes

face issues with respect to their requirements, implementations, and

theoretic foundations.

In this paper we provide an overview of selected encryption schemes

and introduce so called fault attacks targeting hardware implemen-

tations of block ciphers. Selected key pre-distribution schemes, like

random key pre-distribution and hierarchical key distribution, are

presented and depicted. Memory efficient Elliptic Curve Cryptogra-

phy (ECC) introduces feasible public key cryptography schemes for

WSNs. A summary of selected ECC based schemes is given with a fo-

cus on Identity Based Encryption (IBE), which is especially useful in

scenarios with a trusted sink node.

1 Introduction
Wireless Sensor Networks (WSN) are increasingly deployed in environments were

data integrity, confidentiality and authentication of senders becomes an important

requirement. Considering a WSN forming a Body Area Network (BAN), several

low-cost nodes are attached to the human body to collect sensor data. In most body

∗Name has been changed for editorial reasons

2

networks, this data is periodically transfered to a sink node for further processing.

Sink nodes are also often designed to work as gateways to transfer data to eHealth

systems residing in the cloud. These BANs could be deployed in hospitals or at

homes for ambient and assisted living monitoring elderly. Patient data is often

classified as high privacy information that must be transfered in an encrypted

form, without revealing sensitive contents. Security implementations in BANs

must also ensure that nobody can inject faked data as this can have serious impacts,

e.g., wrong prescription of drugs. Thus data packets need to be authenticated to

allow a verification of their origin. While an attacker could have state-of-the-art

hardware to perform attacks, sensor nodes are constraint embedded platforms,

which results in an unusual challenge regarding encryption and key exchange.

To keep energy consumption low, nodes have limited computing power, small

RAM, and low storage capacity. Thus, classic public key cryptography based on

RSA trapdoor function is not suitable due to its high computational overhead. The

complexity of RSA operations does not scale linear with their key size [1], which

makes them too costly when initialized with parameters defined as sufficiently

secure by the National Institute of Standards and Technology (NIST) [2] or other

standard institutions
1
. As todays key management schemes heavily rely on public

key cryptography, researchers have proposed several lightweight alternatives to

RSA based key management. Once keys are exchanged and authenticated, efficient

block ciphers are required to encrypt network communication in real time. Besides

block ciphers, which were designed for a small memory footprint and smaller block

size, modern microcontrollers used in sensor nodes come with implementations

of the Advanced Encryption Standard (AES) [3].

In our scenario, where a WSN is attached to a body and collects patient data,

special issues need to be resolved. These WSNs face interoperability issues and

disruptive connections between its nodes, meaning that an end-to-end connec-

tion is not always available. Especially in the case of data transmission between

meeting humans, a connection is only available ad hoc at random meetings or

at specific meeting times. Therefore approaches exists to deploy network stacks

implementing a Delay-Tolerant Network (DTN) [4].

In section 2, we provide an overview of software implementations for encryp-

tion. We study software modules for TinyOS
2

[5] and Contiki
3

[6] and look at

their choice of block ciphers and operation modes for authenticated encryption.

Furthermore, precautions regarding hardware implementations are presented and

an introduction into fault attacks is given. Besides presenting the challenges of

using block-ciphers, the following sections mainly focus on key management as it

often introduces new and interesting problems. An overview of key pre-distrubtion

schemes is given in section 3, where random key pre-distrubtion and hierarchical

group key management is presented in detail. In section 4, we look at schemes

using public key cryptography based on Elliptic Curve Cryptography (ECC). As part

1A comparison of recommendations for key sizes can be found at http://www.keylength.com.
2TinyOS website: http://www.tinyos.net
3Contiki website: http://www.contiki-os.org

http://www.keylength.com
http://www.tinyos.net
http://www.contiki-os.org

2 Encryption 3

of ECC schemes, modern research on Identity Based Encryption (IBE) is presented,

before concluding the seminar paper.

2 Encryption
Because of RAM and performance constraints, block ciphers need to be optimized

regarding memory consumption and execution time when implemented for sensor

nodes. Also energy consumption and protocol overhead have to be kept small for

better adaption into these distributed networks.

We argue that the selection of appropriate block ciphers should not compromise

on security, as attackers conceivably are equipped with powerful hardware. It is

also imaginable that attackers capture encrypted traffic for later analyzation, which

contradicts the argument that sensor networks are short lived and thus would

require only small key sizes. Hence, we have a critical look at statements regarding

security trade offs.

2.1 Available Software Implementations
In the following, available software modules for encryption are presented and

evaluated regarding their choices of block ciphers and authentication.

2.1.1 Implementations for TinyOS

TinySec [7] for TinyOS 1.x was one of the first implementations of link layer security

in wireless sensor networks. It ensures low power requirements, small latency

and low bandwidth overhead and supports two different modes of operation:

authenticated encryption (TinySec-AE) and authentication only (TinySec-Auth) [7].

CBC mode with an 8 byte Initialization Vector (IV) is used together with a block

cipher. Stream ciphers were excluded as they are vulnerable to repeating IVs and

an addition of more bytes to a packet would violate their premise of keeping the

packet sizes small. To overcome the problem of data leakage in CBC mode using

repeated IVs, they propose to pre-encrypt the IV before use. As an appropriate

energy-efficient block cipher, they chose Skipjack due to its simple implementation

and efficiency. To ensure message integrity CBC-MAC is deployed.

Even from yesterdays perspective, Skipjack was a bad choice as it is a subsequently

declassified algorithm, designed behind closed doors at the NSA, vulnerable to

several cryptanalysis attacks [8]. “In a footnote, which was added later to their paper [7],
they themselves had to admit that AES would also be a viable choice with similar performance
like Skipjack. Even TinySecs successor MiniSec [9] and another implementation called
TinyKey [10] are based on Skipjack instead of widely accepted and standardized block
ciphers, like AES.” [11]

4 2.2 Hardware Implementations

2.1.2 Implementations for Contiki

ContikiSec [12] provides security for the operating system Contiki with the follow-

ing modes of operation:

ContikiSec-Enc Providing encryption only using AES with an 2 byte IV, ContikiSec-

Enc uses Cipher Block Chaining-Ciphertext Stealing (CBC-CS) mode. This

mode is utilized to prevent expansion of the produced ciphertext, when

messages are not entirely separable into input blocks. This method requires

a single network wide key, pre-distributed on all devices or any method

providing a session key resulting from other protocols.

ContikiSec-Auth Authentication only is provided by producing a MAC using the

standardized CMAC algorithm.

ContikiSec-AE AE mode provides both authentication and encryption by deploying

AES in Offset Codebook Mode (OCB), which generates an authenticated

cipher stream.

All choices are well made as the authors chose well-studied algorithms mostly

standardized by the NIST. No practical attacks against AES itself is known, also CBC-

CS mode for encryption only and CMAC for authentication only are sufficiently

secure regarding their requirements. OCB mode for combined authentication

and encryption is also the best choice for this purpose, because formal analysis

has shown its security and superior performance compared with for example AES-

GCM [13]. What should be noted is that OCB mode is patented and its authors

allows its use only free of charge when implemented in software licensed under

the GNU GPL, non-commercial software, or government software
4
.

2.2 Hardware Implementations
Since the NIST standardized the Advanced Encryption Algorithm (AES), manufac-

tures have implemented it in hardware, providing extended instruction sets for

software modules [3]. Many improvements were made to use less hardware for AES

specific operations. The radio controller Atmel AT86RF231, for instance, provides

instructions to setup AES using Electronic Codebook (ECB) mode or Cipher Block

Chaining (CBC) mode. Ghaznavi et al., for example, redesigned the MixColumns

function to use less hardware. Others optimize regarding parallelizing the algo-

rithm in hardware [15]. Consequently, it is not necessary to implement the block

cipher algorithm in software. However, this does not mean that no mistakes can

be made. The provided implementations have to be used cautiously to prevent for

example key exposure, injection/fault attacks, or side-channel attacks.

In the following, we want to focus on selected challenges and attacks regarding

these hardware implementations.

4Regarding the usage of OCB: http://www.cs.ucdavis.edu/~rogaway/ocb/offer.htm

http://www.cs.ucdavis.edu/~rogaway/ocb/offer.htm

2 Encryption 5

2.2.1 About the Utilization of Hardware Instructions

When implementing encryption using microcontroller instruction sets, e.g., in-

structions provided by Atmel AT86RF231 [3], some precautions have to be taken.

ECB mode must not be used because of its insecurity against replay attacks and

preservation of message pattern due to its non-chaining structure. As AES in CBC

mode itself does not provide any authentication, additional software implemen-

tations are needed to provide tamper resistant ciphertexts. CCM mode (counter

with CBC-MAC) or AES-GCM can provide authenticated encryption, standardized

in RFC 5084 [16].

2.2.2 Fault Attacks against AES Hardware Implementations

Considering an attacker who has physical access, fault attacks become possible.

Fault attacks influence hardware components by changing their environment to

cause faults in their calculations. Common methods of inducing faulty behavior

by external stimulation according to The sorcerer’s apprentice guide to fault attacks [17]

are:

Variation of power supply Changing the voltage that is supplied to a microcon-

troller can cause glitches, like misinterpretation or skipping of instructions.

This attack is only possible with direct physical access.

Temperature Hardware must operate in a specific temperature range, as manufac-

tures do not guarantee correct viability outside these thresholds. Because

read and write temperature thresholds on non-volatile memories vary, attacks

can be mounted to heat chips until read operations fail, but write operations

work according to the specification.

White light The photoelectric effect causes microcontrollers to be sensitive regard-

ing white light.

Laser With similar effects as white light, lasers can be targeted much more precisely

to influence specific areas of a chip.

Hagai Bar-El and Whelan have done experimental evaluations to show that instruc-

tions are skipped, when the power supply of their microcontroller was dropped

from Vcc to 0 V and later resumed [17]. As shown in Figure 1a, a selective execution

of instructions can be achieved. When executed at exact moments, this attack can

cause serious security implications for the implemented encryption scheme. The

induced instruction glitches can reduce the number of loops in a block-cipher to

produce an easy to break single-round variant. Besides reducing loops, data can be

manipulated when the voltage supply is controlled precisely (cf. Figure 1b).

Because many smart-cards are vulnerable to these types of attack, much research

is being done to find new attacks and countermeasures. Roche et al. [18] attack

AES implementations based on a new fault model. Fault attacks combined with

6 2.2 Hardware Implementations

(a) Glitch attack resulting in skipped instructions

Power signature shows

data corruption

(b) Glitch attack with effects on data

Figure 1: Experimental fault attacks by dropping voltage supply, blue curve depicts normal

execution, red curve depicts execution with Vcc glitch (Source: [17])

physically leaked side-channel information, e.g., electromagnetic radiations, are

used to recover the key. The attack will induce faults in the last round of AES

key-scheduling. Their simplest attack using fault injection on pre-computed key

schedules will change the last two round keys in the following way:

K̃9 = K9 ⊕ E9

K̃10 = K10 ⊕ E10

K denotes the original key, E is the value of an occurring error, and K̃ the resulting

faulty key. Their attack works by letting the device encrypt N messages P1, . . . , PN

two times. The second time they inject an error while the key schedule is computed,

which produces N faulty ciphertexts C̃1, . . . , C̃N
, instead of C1, . . . , CN

. By using

simple statistic analysis of the ciphertext pairs (C1, C̃1), . . . , (CN, C̃N), they try to

find the specific error and subkey bytes. This basic attack is developed further

and combined with side-channel analysis to lower the requirements regarding

the attack surface. Their more sophisticated attacks also works against non pre-

computed key schedules [18].

2.2.3 Countermeasures

Countermeasures against fault attacks can take place on hardware and/or software

level. Sensors can be implemented to actively detect malicious induced effects

and classify them as attacks. This includes light sensor, frequency detectors, and

supply voltage detectors. Hardware redundancy, based on duplicated circuits and

comparison of results, can make attacks much harder. These are one of the most

implemented and effective countermeasures when done the right way [17, 18]. All

hardware countermeasures could also be implemented in software, but would

double the computing time in most cases, as parallelization is not as easy as in

hardware implementations [17].

3 Key Pre-distribution 7

3 Key Pre-distribution
To allow the use of previously discussed block ciphers, encryption keys need to

be pre-distributed among the devices that want to communicate with each other.

Algorithms for deploying these pre-shared keys need to be implemented, which

must support different requirements based on the setup of its WSN. According to

Xiao et al., key distribution schemes should mainly provide authenticity to provide

a way to identify nodes, scalability, and flexibility to allow adding of new nodes at

every time [19]. We omit confidentiality and integrity because they were discussed

in Section 2. Authenticity, scalability, and flexibility lead to several basic attack

scenarios key distribution schemes have to protect against [19]. An attacker could,

for example, compromise certain parts of the network and replicate those nodes to

take over the entire network. Key distribution schemes should resist against those

attacks by preventing replication. When bad behavior of single nodes is detected,

those nodes should be excluded, by revoking them using the key management

scheme. Furthermore, it should be possible to deploy new nodes into existing key

management infrastructures and to retain secrecy of benign nodes, when single

nodes are taken over (Resilience).

Several key pre-distribution schemes were proposed to fulfill these requirements,

which are based on differing assumptions regarding the sensor network. We will

present fundamental problems, the most common schemes, and show possible

weaknesses.

3.1 Fundamentals
The simplest key pre-distribution form is the pre-deployment of a single network

wide key on all nodes in the network [19]. Besides small storage requirements, this

scheme apparently does not prevent any of the three discussed attacks as a single

compromised node results in a compromised network.

In a pairwise key distribution scheme [19], a node is deployed with n− 1 keys

to communicate with every other node. This offers pairwise encryption and au-

thentication as every key belongs uniquely to two nodes. Pairwise pre-distribution

also complies with Resilience, because a take over of nodes does not reveal secret

information about other nodes due to differing keys. This scheme only makes

sense in small sensor networks as each new node requires a new key to be stored

by all other nodes, resulting in a high memory usage. A superior sink node with

a larger memory and higher transmission rates can be used as Key Distribution

Center (KDC). A KDC can be queried for session keys used one time for a specific

communication between nodes.

3.2 Random Key Pre-distribution
Eschenauer and Gligor presented a random key pre-distribution protocol to over-

come the problem of storing N − 1 keys on every participant. The distribution

8 3.4 Hierarchical Group Key Management Schemes

scheme works as follows [19, 20]:

1. A large pool of |S| key-identifier pairs is generated.

2. K key-identifier pairs are randomly taken out of this pool, where K � N and

N is the number of nodes in the WSN and saved as a keyring. Every node

gets its own keyring assigned.

3. Based on the identifiers, two nodes can agree upon one shared key, while the

probability is sufficiently high that they both share at least one matching key.

If no shared key is available the nodes perform path-key discovery. This means

a third party node will be searched that shares keys of both communicating

nodes.

The scheme successfully optimizes regarding storage space and is also scalable, as

the size of the underlying key pool and the number of chosen keys can be adaptively

chosen according to the size of the network. The downsides of this schemes are

that it provides no form of multicasting messages because between the sender and

every recipient a different key has to be negotiated. There is also no method that

would provide strong revocation of compromised nodes and freshness of keys.

3.3 Schemes Based on Random Key Pre-distribution
Several more complex protocols were proposed that are based on the random

pre-distribution model [19, 20]. Du et al. published a model extending the concept

using Blom’s key matrix instead of individual keys [21]. A matrix Mn×n is generated,

where nodes can select keys from by looking at specific cells. If node i and j want to

communicate, i looks at Mij and j looks at Mji to select the same shared key. In this

scheme n matrices are generated and on each node only randomly selected matrices

are stored, like in the basic random key pre-distribution scheme. Their scheme

offers more robustness and security, because more nodes need to be compromised

compared to the basic random pre-distribution scheme. This advantages comes to

the cost of more computational overhead and memory consumption.

Even more complex protocols like LEAP and SHELL were published [19, 20].

They introduce different key types, like individual, group, cluster, and pairwise

keys, where each key type is distributed and used differently. They fulfill most

requirements and are flexibel, but require complex implementations. Consequently

much memory space is needed for their implementation and keys. Besides their

memory usage, their implementation will likely contain bugs due to their high

complexity.

3.4 Hierarchical Group Key Management Schemes
Panja et al. were the first who proposed a hierarchical group key management [22].

A hierarchical management scheme consists of groups sharing the same group

3 Key Pre-distribution 9

Cluster head

General sensor nodes

Relay nodes

Figure 2: Hierarchical structure proposed by Panja et al. (Derived from [22])

key, ordered hierarchically based on their computing power or other factors like

access rights. The scheme consists of cluster heads, having many general sensor

nodes as children, arranged in a tree structure (cf. Figure 2). A partial key for each

sensor node is computed as follows [22]:

1. All leaf nodes generate their keys randomly.

2. The parents of these leaf nodes compute their keys based on the child nodes

and the given function f (k1, k2) = αk1⊕k2 mod p, where k1, k2 are keys and

p is prime with k < p for both k.

a) When the corresponding tree is binary, a partial key is calculated by the

following equation, where the index of K defines the position in the

tree by depth and row.

Kl,v = f (Kl+1,2v, Kl+1,2v+1)

b) In situations where the tree is not binary a slightly modification is added,

where m = nsiblings − 2 and nsiblings defines the number of siblings in

this row.

Kl,v = f (Kl+1,2v+m, Kl+1,2v+1+m)

Group key computation is done by utilizing multi-party Diffie-Hellman and TGDH.

A cluster head node can initiate a group key computation, where every all partial

keys are gathered bottom-up and collected by the cluster head.

1. All leaf nodes generate a partial key gS
, where 〈g〉 = Z∗p, p prime, and S is

a randomly generated number. These partial keys are send to their parent

nodes.

2. Nodes, which are not cluster heads and not leafs, receive partial keys from all

their n children and sums them up together with their own partial key S to

generate an intermediate key IK.

IK = gS1 + · · ·+ gSn + gS = gS1·····Sn·S

10

3. Finally, the cluster head receives all intermediate keys and sums them up

again together with its own partial key S, resulting in the group key K.

4. This group key is encrypted with a one-time symmetric key, only available in

deployment phase, and broadcasted to all nodes of this group. Afterwards

the symmetric key is discarded and the group key is used.

A new group key is calculated, when a cluster head broadcasts an encrypted authen-

ticated message containing the instruction to refresh the group key. This could

also contain the instruction to remove a compromised node, which implements

revocation.

In addition to these algorithms the authors differentiate between intra-cluster

group keys and inter-cluster group keys. When the cluster head broadcasts the

key the first time, blind factors are added, which are unique numbers assigned to

individual nodes [22]. When distributing the group key, each node can recognize its

own blind factor and replace it with their own real factor. This prevents attackers

from eavesdropping the group key in deployment phase.

This scheme is flexible, because it is possible to refresh group keys and revoke

nodes. However, revocation only works to a certain degree, because cluster heads

can only revoke leafs or complete branches. The downside is that it is assumes

that a cluster head does not get compromised, which makes it a worthy target.

It is also quite elegant and simpler to implement than over-engineered schemes

like SHELL [19]. Mortazavi et al. [23] improved upon such schemes to reduce the

rekeying overhead.

4 ECC Based Key Management
Key pre-distribution schemes do not require large amount of processing power or

RAM, but are much less flexible than schemes based on public key cryptography.

In the past, most sensor networks were deployed with pre-distributed keys, lacking

important requirements like fast revocation of keys and secure integration of

newly deployed nodes. RSA based public key algorithms were omitted due to their

seemingly large power consumption while performing underlying multiplication

methods. New implementations of Elliptic Curve Cryptography (ECC) were done

to provide usable public key cryptography with low requirements. ECC is based

upon the Elliptic Curve Discrete Logarithm Problem (ECDLP), which states that

it is hard to find a discrete logarithm of a elliptic curve element with a publicly

known base point. According to Understanding cryptography: a textbook for students
and practitioners [24], the basic definitions are as follows.

Discrete logarithm problem The discrete logarithm problem is to compute l such

that β = αl
. α is a generator for a multiplicative group 〈α〉 = G and β ∈ G.

Elliptic Curve Discrete Logarithm Problem Compute l ∈ [0, n− 1] such that Q =
lP. Let P be a point of order n and Q ∈ 〈P〉

4 ECC Based Key Management 11

Gura et al. have done implementations of public key cryptography for RSA and

ECC for sensor nodes based on ATmega128 and CC1010 microcontroller [1]. Their

implementations are highly optimized regarding memory access, as this is the most

limiting factor on these small processors. The key size for ECC keys can be much

lower than RSA based keys, e.g., a 1024 bit RSA key pair provides as much security

as an 160 bit ECC key pair [2]. This is due to the fact that RSA trapdoor function is

based on the hardness of integer factorization and ECC is based on its ECDLP. While

sub-exponential algorithms exits to solve integer factorization, known algorithms

to solve ECDLP scale exponentially [1]. Their ECC point-multiplication using

160 bit, implementing SECGs standardized elliptic curves in conjunction with

their optimized multiplication, is by a factor of two faster than RSA-1024. As an

example by absolute numbers, RSA-1024 private key operation needed 10.99 s while

a 512 bit montgomery exponentiation for ECC needed 5.37 s. ECC-240 outperforms

RSA-2048 by a much more higher degree as shown in their paper [1].

Their evaluation has shown that it is indeed possible to use public key algorithms

without hardware acceleration on microcontrollers intended for sensor nodes. As

recommended key sizes by NIST [2] for 2011-2030 are RSA-2048 and ECC-240, ECC

should be favored due to their small key sizes and low runtime of its algorithms.

Szczechowiak et al. [25] improved the work of Gura et al. Besides implementing

a hybrid multiplication algorithm, they chose Koblitz curves as these are less

expensive due to their appearance without point doubling. Their implementation

is done for TinyOS and written in C/nesC with some optimizations using assembly,

generated by utility programs for better portability. It is based on MIRACL
5
,

a library that provides all necessary primitives for ECC and was optimized for

embedded platforms. The ECC implementation is based on NIST recommended

k163 Koblitz curves over GF(2162
and y2 = x3 − 3x + 157 with p = 2160 − 2112 +

264 + 1 over GF(p). To speed up the point multiplication in elliptic curves, which

are defined as sP with s as an integer and P a point of the curve, additional memory

is utilized. Their implementation was evaluated on two sensor nodes, the MICA2

(ATmega128L) and Tmote Sky (MSP-430). Computations for the binary field were

between 1.04 s and 2.16 s and 0.72 s to 1.27 s in the prime field. Thus, NanoECC

demonstrates a efficient implementation usable in practice.

4.1 Routing-Driven Key Management
Du et al. [26] proposed a routing-driven key management using ECC. They state

that sensor nodes often only communicate with their communication-neighbors

to route data to the sink node. A node v is a communication-neighbor (c-neighbor)

of a node u if v is on a route from u to the sink node (cf. Figure 3). Because of

this many-to-one communication pattern, nodes do not need to obtain shared

keys for all other nodes in the network. Thus, while in key establishment phase,

shared keys only need to be generated for every node and its neighbors. They

5MIRACL can be found on http://www.shamus.ie/index.php?page=elliptic-curves

http://www.shamus.ie/index.php?page=elliptic-curves

12 4.1 Routing-Driven Key Management

sink node

H-sensor

L-sensor

u
v

Figure 3: Routing-driven key management: Clusters with many low-end sensors (L-sensors),

controlled by single high-end sensors (H-sensors).

differentiate between high-end (H-sensors) and low-end sensors (L-sensors) with

different hardware configurations. A small number of H-sensors exist in a network,

which are equipped with tamper-resitant hardware, preventing an adversary to

extract keys, data, or stored code. Whereas L-sensors are low cost devices without

such protection. Both sensor types are location aware. As depicted in Figure 3,

H-sensors form a basis station for clustering many L-sensors together, and are used

as gateways to route traffic to the sink node of the whole WSN. We will introduce

the centralized key establishment described in the paper and omit the distributed

scheme.

4.1.1 Centralized Key Establishment

1. A server generates public/private key pairs (KR
u , KU

u). Every L-sensor is pre-

loaded with its private key, whereas every H-sensor also contains the public

keys of all L-sensors.

2. Each H-sensor stores a common ECC public/private key pair (KU
H, KR

H) for au-

thenticating broadcasts using Elliptic Curve Digital Signature Algorithm (ECDSA).

The public part is also stored on every L-sensor to verify these broadcasts.

Additionally, H-sensors are deployed with a symmetric key KH used for

communicating among H-sensors.

3. Inside a cluster, each L-sensor sends key-request messages to their H-sensor,

which includes their unique ID and location. The H-sensor generates shared-

keys Ku,v for all L-sensors in its cluster for sensor u and its c-neighbor v,

using its public key KR
u . This shared-keys are encrypted and send by unicast

to u.

4. u decrypts the message and stores the shared key for communication between

u and v.

5 Conclusion 13

4.1.2 Remarks

Revocation is done by H-sensors, which should also detect malicious nodes. A

revocation message is signed using ECDSA and contains the ID of the compromised

node. This message is sent to all L-sensors of this cluster, which can check whether

they communicate with a malicious node or not.

The scheme implements revocation and resilience in a feasible way. Their per-

formance evaluation also looks promising considering the amount of L-sensors

involved in the setup [26]. This key management requires a well thought out net-

work structure, location aware nodes, and H-nodes with tamper-resistant hardware,

which are quite high requirements.

5 Conclusion
In this seminar paper, we presented selected security primitives for wireless sensor

networks. Software implementations of encryption modules and fault attacks

against hardware implementations were discussed. Key pre-distribution schemes

were depicted with their advantages and disadvantages. As a promising public key

technique, ECC could solve some problems pre-distribution schemes could not

solve perfectly and is thus viewed as WSNs future key distribution implementation.

Several hard issues remain unsolved. The problem of adding nodes to an existing

network is difficult, even with public key cryptography, as every node in this

distributed network has to be informed about newly added and accepted public keys.

This can partially be solved by defining the sink node as a trusted third party, as

done in Identity Based Cryptography. Revocation is even harder, because of several

pitfalls. Firstly, a node needs to be identified as a malicious node, possibly overtaken

by an adversary. Only a few papers deal with this issue, as it is impossible to detect

malicious nodes, when they behave correctly and just capture traffic. Secondly, the

revocation packet needs to be routed to every node quickly, although malicious

nodes could work as black holes, preventing the distribution. These problems exist

due to the distributed nature of wireless sensor networks. Furthermore, physical

attacks against hardware implementations, as discussed in section 2.2, need to be

taken more seriously. Many WSN are deployed in areas without any additional

surveillance, which makes fault attacks possible and leave them undetected.

References
[1] Nils Gura, Arun Patel, Arvinderpal Wander, Hans Eberle, and Sheueling Chang Shantz.

“Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs”. In: Lecture Notes in Computer
Science 3156 (2004), pp. 119–132.

[2] Elaine Barker, William Barker, William Burr, William Polk, and Miles Smid. “Recommenda-

tion for key management”. In: NIST Special Publication 800-57 Part 1 Rev. 3 (May 2011).

[3] AT86RF231/ZU/ZF datasheet. Atmel Corporation.

14 References

[4] K. Fall. “A delay-tolerant network architecture for challenged internets”. In: Proceedings of the
2003 conference on Applications, technologies, architectures, and protocols for computer communica-
tions. ACM. 2003, pp. 27–34.

[5] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh,

E. Brewer, et al. “Tinyos: An operating system for sensor networks”. In: Ambient intelligence
35 (2005).

[6] A. Dunkels, B. Gronvall, and T. Voigt. “Contiki-a lightweight and flexible operating system

for tiny networked sensors”. In: 29th Annual IEEE International Conference on Local Computer
Networks. IEEE. 2004, pp. 455–462.

[7] Chris Karlof, Naveen Sastry, and David Wagner. “TinySec: a link layer security architecture

for wireless sensor networks”. In: Proceedings of the 2nd international conference on Embedded
networked sensor systems, SenSys ’04. Baltimore, MD, USA: ACM, 2004, pp. 162–175.

[8] E. Biham, A. Biryukov, O. Dunkelmann, E. Richardson, and A. Shamir. “Initial observations

on the skipjack encryption algorithm”. In: SAC’98. 1998.

[9] M. Luk, G. Mezzour, A. Perrig, and V. Gligor. “MiniSec: a secure sensor network communica-

tion architecture”. In: 6th International Symposium on Information Processing in Sensor Networks,
IPSN 2007. IEEE. 2007, pp. 479–488.

[10] R. Doriguzzi Corin, G. Russello, and E. Salvadori. “TinyKey: A light-weight architecture for

Wireless Sensor Networks securing real-world applications”. In: Eighth International Conference
on Wireless On-Demand Network Systems and Services, WONS. 2011, pp. 68–75.

[11] Felix Büsching, Andreas Figur, Dominik Schürmann, and Lars Wolf. “Utilizing Hardware

AES Encryption for WSNs”. In: Proccedings of the 10th European Conference on Wireless Sensor
Networks, EWSN 2013. 2013, pp. 33–36.

[12] L. Casado and P. Tsigas. “Contikisec: A secure network layer for wireless sensor networks

under the contiki operating system”. In: Identity and Privacy in the Internet Age (2009), pp. 133–

147.

[13] T. Krovetz and P. Rogaway. “The software performance of authenticated-encryption modes”.

In: Fast Software Encryption. Springer. 2011, pp. 306–327.

[14] S. Ghaznavi, C. Gebotys, and R. Elbaz. “Efficient technique for the FPGA implementation of

the AES MixColumns transformation”. In: International Conference on Reconfigurable Computing
and FPGAs, ReConFig ’09. 2009, pp. 219–224.

[15] Chih-Peng Fan and Jun-Kui Hwang. “Implementations of high throughput sequential and

fully pipelined AES processors on FPGA”. In: International Symposium on Intelligent Signal
Processing and Communication Systems, ISPACS 2007. 2007, pp. 353–356.

[16] R. Housley. Using AES-CCM and AES-GCM Authenticated Encryption in the Cryptographic Message
Syntax (CMS). RFC 5084 (Proposed Standard). Internet Engineering Task Force, Nov. 2007.

[17] Hamid Choukri David Naccache Michael Tunstall Hagai Bar-El and Claire Whelan. The
sorcerer’s apprentice guide to fault attacks. Cryptology ePrint Archive, Report 2004/100. 2004.

[18] Thomas Roche, Victor Lomné, and Karim Khalfallah. “Combined fault and side-channel

attack on protected implementations of AES”. In: Smart Card Research and Advanced Applications.
Ed. by Emmanuel Prouff. Vol. 7079. Lecture Notes in Computer Science. Springer, 2011,

pp. 65–83.

[19] Yang Xiao, Venkata Krishna Rayi, Bo Sun, Xiaojiang Du, Fei Hu, and Michael Galloway. “A sur-

vey of key management schemes in wireless sensor networks.” In: Computer Communications
30.11-12 (Nov. 2, 2007), pp. 2314–2341.

References 15

[20] J.C. Lee, V.C.M. Leung, K.H. Wong, Jiannong Cao, and H.C.B. Chan. “Key management

issues in wireless sensor networks: current proposals and future developments”. In: Wireless
Communications, IEEE 14.5 (2007), pp. 76–84.

[21] Wenliang Du, Jing Deng, Yunghsiang S. Han, Pramod K. Varshney, Jonathan Katz, and Aram

Khalili. “A pairwise key predistribution scheme for wireless sensor networks”. In: ACM Trans.
Inf. Syst. Secur. 8.2 (May 2005), pp. 228–258.

[22] B. Panja, S.K. Madria, and B. Bhargava. “Energy and communication efficient group key

management protocol for hierarchical sensor networks”. In: IEEE International Conference on
Sensor Networks, Ubiquitous, and Trustworthy Computing. Vol. 1. 2006, 8 pp.

[23] S.A. Mortazavi, A.N. Pour, and T. Kato. “An efficient distributed group key management

using hierarchical approach with Diffie-Hellman and Symmetric Algorithm: DHSA”. In:

International Symposium on Computer Networks and Distributed Systems, CNDS. 2011, pp. 49–54.

[24] C. Paar and J. Pelzl. Understanding cryptography: a textbook for students and practitioners. Springer,

2010.

[25] Piotr Szczechowiak, Leonardo B. Oliveira, Michael Scott, Martin Collier, and Ricardo Dahab.

“NanoECC: Testing the limits of Elliptic Curve Cryptography in sensor networks”. In: Wireless
Sensor Networks. Ed. by Roberto Verdone. Vol. 4913. Lecture Notes in Computer Science.

Springer, 2008, pp. 305–320.

[26] Xiaojiang Du, Mohsen Guizani, Yang Xiao, and Hsiao-Hwa Chen. “A routing-driven Elliptic

Curve Cryptography based key management scheme for Heterogeneous Sensor Networks.”

In: IEEE Transactions on Wireless Communications 8.3 (Nov. 15, 2009), pp. 1223–1229.

	1 Introduction
	2 Encryption
	2.1 Available Software Implementations
	2.1.1 Implementations for TinyOS
	2.1.2 Implementations for Contiki

	2.2 Hardware Implementations
	2.2.1 About the Utilization of Hardware Instructions
	2.2.2 Fault Attacks against AES Hardware Implementations
	2.2.3 Countermeasures

	3 Key Pre-distribution
	3.1 Fundamentals
	3.2 Random Key Pre-distribution
	3.3 Schemes Based on Random Key Pre-distribution
	3.4 Hierarchical Group Key Management Schemes

	4 ECC Based Key Management
	4.1 Routing-Driven Key Management
	4.1.1 Centralized Key Establishment
	4.1.2 Remarks

	5 Conclusion

